NOTA: P	ER IL COMI	PITO DA 6 CE	EDITI NON	VIENE C	ONSIDERA	ATA L'UL	TIMA DOMANDA E IL \	VOTO FINALE	E CORRISPONDE	ALLA SOMMA D	EI PUNTI. PER IL COMP	ITO DA 9 CREDITI	IL VOTO FINALE SA	ARA' LA SOMMA	DEI PUNTI DIV	ISA PER 34 E MO	OLTIPLICATA PER	R 30						
	prodotto reazione	il Scrivere il di prodotto d reazione ti Cl Se e F	prodott a reazion	o di pro	ivere il So dotto di pro zione re: AleS tra	odotto di azione	Bilanciare la reazione di ossidoriduzione che avviene in ambiente acido ClO ₃ (ac) + Sb(s) -> ClO ₂ (g) + SbO'(aq) e inserire i coefficienti stechiometrici separati da uno spazio	Indicare il numero di elettroni scambiati NELLA REAZIONE BILANCIAT SOPRA		quantità del punto	1) indicare il materiale degli elettrodi A e B 2) indicare il contenuto delle due soluzioni 3) indicare il verso degli elettroni (da A B oppure da B ad A)	disegnata conia i	Indicare la geometria I dell'atomo centrale di TRIFLUORURO DI ARSENICO	Disegna la formula del TRIIODURO DI FOSFORO. Clicca sul link sotto, una volta disegnata copia il codice 9 generato con lo smile e incollalo sotto. Disegnata copia il codice Wars/drawer.ht ml	Indicare la geometria del TRIIODURO DI FOSFORO	Disegna la formula di TRICLORURC DI AZOTO. Clicca sul link sotto, una volta disegnata copia il codice generato con la smile e incollali sotto. Intp://radchemlab.unipv.it/Cov dWars/drawer.html	indicare la a geometria a dell'atomo centrale di O TRICLORURCO DI AZOTO	Calcolare la solubilità in mol/I del sale tallio(1) iodato avente KPS=3.12x10°°.	Indicare la concentrazione degli ioni all'equilibrio	Bilanciare la reazione (2-H ₂ OH() -> C ₂ H ₃ OH() -> C ₃ H ₄ (g) + O ₂ (g) e sapendo che deltaH°f(2H5OH())=-277.0 kJ/mol, deltaH°f(C2H6(g))= 84.68 kJ/mol e \$'(C2H5OH())]=+(1607 kJ/molK, \$'(C2H6(g))=+0.2: 95 kJ/molK, \$'(C2(g))=+0.2: 95 kJ/molK, \$'(C2(g))	IL DELTA S E- ED INDICARLO 1. SOTTO		Sapendo che 35Cl è un isotopo stabile , prevedere il decadimento dei seguenti isotopi: 36Cl, 32Cl	
Punti Risposta corretta	LiCI	SeF2 SeF SeF6	2 4 NH3	1 Al2	1 S3 HI	1 I	3 1 (4) 3 1 (2)	1	3 3,85 Litri	2 289 kJ	1) A=Pt, B=Sb (Pt) 2)sol A=ClO3(-) ClO2, sol B=SbO(+) 3) da B a A		tetraedrica	1 IP(I)I	tetraedrica	CIN(CI)CI	tetraedrica	1,77E-3 M	3 [Ti]=[IO3(-)]=1.77E-3 M	1 384,64 kJ/mol	0.3426 kJ/molK		36CI> beta- + 36 Ar 32CI> beta+ + 32 S	2 6 6,9E-15
			prodott a C reazion	o di pro	ivere il So dotto di pro zione re: Rb e S tra	odotto di azione	Bilanciare la reazione di ossidoriduzione che avviene in ambiente acido Eu ⁿ (aq) + Ta(s) -> Eu ⁿ (aq) + Ta(s), -> Eu ⁿ (aq) + Ta ₂ O ₃ (s) e inserire i coefficienti stechiometrici separati da uno spazio	Indicare il numero di elettroni scambiati NELLA REAZIONE BILANCIAT SOPRA		punto precedente	1) indicare il materiale degli elettrodi A e B 2) indicare il contenuto delle due soluzioni 3) indicare il verso degli elettroni (da A a B oppure da B ad A)	disegnata copia i	geometria I dell'atomo centrale di DIBROMURO DI TELLURIO	Disegna la formula di NH2OH. Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. Dispositiva di contra	Indicare la geometria di NH2OH	Disegna la formula di PENTABROM URO DI BISMUTO. Clicca sul link sotto, una volci disegnata colo ili codice generato con le smile e incollali sotto. http://rachemlab.unipv.it/cow.	indicare la geometria di dell'atomo a centrale di PENTABROM DURO DI O BISMUTO	Calcolare la solubilità in gri de sale rame(II) idrossido avente KPS=4.8x10⁻≫	concentrazione degli ioni	Data la reazione (d bilanciare con coefficient minimi inter): CuSO4(s) = Cu2O(l) + SO(s) = Cu2O(l) + SO(s) = he CuSO4(s)S*= +109.2 J/molKGH*= -184 kJ/moi; Cu2O(l)S*- +129.9 J/molKGH*= -112 kJ/moi; Cu2O(l)S*- +256.77 kJ/moi; Cu2O(l)S*- +2	CALCOLARE IL DELTA S ED INDICARLO		Scrivere il prodotto che si forma dal decadimento alfa dei seguenti nuclidi radioattivi 222Rin, 236Pu	Calcolare il pH di una soluzione satura di idrossid di cadmio (Ca((CH)2) avente KPS=7.2x10 ⁻¹⁵
Punti Risposta corretta	(SO) SO SO3	2 (CI2) CI4	1 BH3	1 Rb:	1 2S PI	1 H3	10 2 (5) 10 1 (10)	1	1 :	3,59 MJ	1) A=Pt, B=Ta (Pt) 2)sol A=Eu(3+) Eu(2+), sol B=Ta2O5 3) da B a A	3 · · · · · · · · · · · · · · · · · · ·	tetraedrica	1 NO, [H]N([H])O, [H]ON([H])[H]	tetraedrica	1	1 (bipiramidale trigonale	2,23E-5 g/L [2,28E-7 M]	3 [Cu]=2,28E-7 M [OH(-)]=4,56E-7 M	1	1,056 kJ/molK	-1388 kJ/mol	218Po, 232U	9.